The size control of fission yeast revisited

Author:

Sveiczer A.1,Novak B.1,Mitchison J.M.1

Affiliation:

1. Department of Agricultural Chemical Technology, Technical University of Budapest, Hungary.

Abstract

An analysis was made of cell length and cycle time in time-lapse films of the fission yeast Schizosaccharomyces pombe using wild-type (WT) cells and those of various mutants. The more important conclusions about ‘size controls’ are: (1) there is a marker in G2 in WT cells provided by a rate change point (RCP) where the linear rate of length growth increases by approximately 30%. The period before this RCP is dependent on size and can be called a ‘sizer’. The period after the RCP is nearly independent of size and can be called a ‘timer’. The achievement of a critical threshold size is at or near the RCP which is on average at about 0.3 of the cycle (halfway through G2). This is much earlier than was previously believed. (2) The RCP is at about the time when H1 histone kinase activity and the B type cyclin cdc13 start to rise in preparation for mitosis. The RCP is also associated with other metabolic changes. (3) In wee1 mutants, the mitotic size control is replaced by a G1/S size control which is as strong as the mitotic control. As in WT cells, there is a sizer which precedes the RCP followed by a timer but the RCP is at about the G1/S boundary and has a larger increase (approximately 100%) in rate. (4) cdc25 is not an essential part of the size control at mitosis or at the G1/S boundary. (5) Three further situations have been examined in which the mitotic size control has been abolished. First, induction synchronisation by block and release of cdc2 and cdc10. In the largest oversize-cells which are produced, the RCP is pushed back to the beginning of the cycle. There is no sizer period but only a timer. Second, when both the antagonists wee1 and cdc25 are absent in the double mutant wee1-50 cdc25 delta. In this interesting situation there is apparently no mitotic size control and the cycle times are quantised. Third, in rum1 delta wee1-50 where the normal long G1 in wee1 is much reduced, there is probably no size control either in G1 or in G2 causing a continuous shortening of division length from cycle to cycle.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3