Modelling how plant cell-cycle progression leads to cell size regulation

Author:

Williamson Daniel,Tasker-Brown William,Murray James A. H.,Jones Angharad R.,Band Leah R.ORCID

Abstract

Populations of cells typically maintain a consistent size, despite cell division rarely being precisely symmetrical. Therefore, cells must possess a mechanism of “size control”, whereby the cell volume at birth affects cell-cycle progression. While size control mechanisms have been elucidated in a number of other organisms, it is not yet clear how this mechanism functions in plants. Here, we present a mathematical model of the key interactions in the plant cell cycle. Model simulations reveal that the network of interactions exhibits limit-cycle solutions, with biological switches underpinning both the G1/S and G2/M cell-cycle transitions. Embedding this network model within growing cells, we test hypotheses as to how cell-cycle progression can depend on cell size. We investigate two different mechanisms at both the G1/S and G2/M transitions: (i) differential expression of cell-cycle activator and inhibitor proteins (with synthesis of inhibitor proteins being independent of cell size), and (ii) equal inheritance of inhibitor proteins after cell division. The model demonstrates that both these mechanisms can lead to larger daughter cells progressing through the cell cycle more rapidly, and can thus contribute to cell-size control. To test how these features enable size homeostasis over multiple generations, we then simulated these mechanisms in a cell-population model with multiple rounds of cell division. These simulations suggested that integration of size-control mechanisms at both G1/S and G2/M provides long-term cell-size homeostasis. We concluded that while both size independence and equal inheritance of inhibitor proteins can reduce variations in cell size across individual cell-cycle phases, combining size-control mechanisms at both G1/S and G2/M is essential to maintain size homeostasis over multiple generations. Thus, our study reveals how features of the cell-cycle network enable cell-cycle progression to depend on cell size, and provides a mechanistic understanding of how plant cell populations maintain consistent size over generations.

Funder

Biotechnology and Biological Sciences Research Council

UK Research and Innovation

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3