Author:
Shaltiel Indra A.,Krenning Lenno,Bruinsma Wytse,Medema René H.
Abstract
Cell cycle checkpoints activated by DNA double-strand breaks (DSBs) are essential for the maintenance of the genomic integrity of proliferating cells. Following DNA damage, cells must detect the break and either transiently block cell cycle progression, to allow time for repair, or exit the cell cycle. Reversal of a DNA-damage-induced checkpoint not only requires the repair of these lesions, but a cell must also prevent permanent exit from the cell cycle and actively terminate checkpoint signalling to allow cell cycle progression to resume. It is becoming increasingly clear that despite the shared mechanisms of DNA damage detection throughout the cell cycle, the checkpoint and its reversal are precisely tuned to each cell cycle phase. Furthermore, recent findings challenge the dogmatic view that complete repair is a precondition for cell cycle resumption. In this Commentary, we highlight cell-cycle-dependent differences in checkpoint signalling and recovery after a DNA DSB, and summarise the molecular mechanisms that underlie the reversal of DNA damage checkpoints, before discussing when and how cell fate decisions after a DSB are made.
Publisher
The Company of Biologists
Cited by
255 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献