Sdmg1 is a conserved transmembrane protein associated with germ cell sex determination and germline-soma interactions in mice

Author:

Best Diana1,Sahlender Daniela A.2,Walther Norbert3,Peden Andrew A.2,Adams Ian R.145

Affiliation:

1. MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.

2. Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 2XY, UK.

3. School of Life Science, University of Hamburg, Hamburg D-22527, Germany.

4. Edinburgh Cancer Research Centre, School of Molecular and Clinical Medicine,University of Edinburgh, MRC Human Genetics Unit Building, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.

5. Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.

Abstract

In mammals, the supporting cell lineage in an embryonic gonad communicates the sex-determining decision to various sexually dimorphic cell types in the developing embryo, including the germ cells. However, the molecular nature of the sex-determining signals that pass from the supporting cells to the germ cells is not well understood. We have identified a conserved transmembrane protein, Sdmg1, owing to its male-specific expression in mouse embryonic gonads. Sdmg1 is expressed in the Sertoli cells of embryonic testes from 12.5 dpc, and in granulosa cells of growing follicles in adult ovaries. In Sertoli cells, Sdmg1 is localised to endosomes, and knock-down of Sdmg1 in Sertoli cell lines causes mis-localisation of the secretory SNARE Stx2 and defects in membrane trafficking. Upregulation of Sdmg1appears to be part of a larger programme of changes to membrane trafficking pathways in embryonic Sertoli cells, and perturbing secretion in male embryonic gonads in organ culture causes male-to-female germ cell sex reversal. These data suggest that changes that occur in the cell biology of embryonic Sertoli cells may facilitate the communication of male sex-determining decisions to the germ cells during embryonic development.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3