Affiliation:
1. Department of Medicine, University of Cambridge Clinical School, Level 5, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK. SS10057@MEDSCHL.cam.ac.uk.
Abstract
The murine natural resistance-associated macrophage protein, Nramp1, has multiple pleiotropic effects on macrophage activation and regulates survival of intracellular pathogens including Leishmania, Salmonella and Mycobacterium species. Nramp1 acts as an iron transporter, but precisely how this relates to macrophage activation and/or pathogen survival remains unclear. To gain insight into function, anti-Nramp1 monoclonal and polyclonal antibodies are used here to localise Nramp1 following activation and infection. Confocal microscope analysis in uninfected macrophages demonstrates that both the mutant (infection-susceptible) and wild-type (infection-resistant) forms of the protein localise to the membranes of intracellular vesicular compartments. Gold labelling and electron microscopy defines these compartments more precisely as electron-lucent late endosomal and electron-dense lysosomal compartments, with Nramp1 colocalizing with Lamp1 and cathepsins D and L in both compartments, with macrosialin in late endosomes, and with BSA-5 nm gold in pre-loaded lysosomes. Nramp1 is upregulated with interferon-(gamma) and lipopolysaccaride treatment, coinciding with an increase in labelling in lysosomes relative to late endosomes and apparent dispersion of Nramp1-positive vesicles from a perinuclear location towards the periphery of the cytoplasm along the microtubular network. In both control and activated macrophages, expression of the protein is 3- to 4-fold higher in wild-type compared to mutant macrophages. In Leishmania major-infected macrophages, Nramp1 is observed in the membrane of the pathogen-containing phagosomes, which retain a perinuclear localization in resting macrophages. In Mycobacterium avium-infected resting and activated macrophages, Nramp1-positive vesicles migrated to converge, but not always fuse, with pathogen-containing phagosomes. The Nramp1 protein is thus located where it can have a direct influence on phagosome fusion and the microenvironment of the pathogen, as well as in the more general regulation of endosomal/lysosomal function in macrophages.
Publisher
The Company of Biologists
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献