Vinculin but not alpha-actinin is a target of PKC phosphorylation during junctional assembly induced by calcium

Author:

Perez-Moreno M.1,Avila A.1,Islas S.1,Sanchez S.1,Gonzalez-Mariscal L.1

Affiliation:

1. Center for Research and Advanced Studies (CINVESTAV), Department of Physiology, Biophysics and Neurosciences, Ap. Postal 14-740, Mexico D.F. 07000, Mexico.

Abstract

The establishment of the junctional complex in epithelial cells requires the presence of extracellular calcium, and is controlled by a network of reactions involving G-proteins, phospholipase C and protein kinase C. Since potential candidates for phosphorylation are the tight junction associated proteins ZO1, ZO2 and ZO3, in a previous work we specifically explored these molecules but found no alteration in their phosphorylation pattern. To continue the search for the target of protein kinase C, in the present work we have studied the subcellular distribution and phosphorylation of vinculin and alpha-actinin, two actin binding proteins of the adherent junctions. We found that during the junctional sealing induced by Ca2+, both proteins move towards the cell periphery and, while there is a significant increase in the phosphorylation of vinculin, alpha-actinin remains unchanged. The increased phosphorylation of vinculin is due to changes in phosphoserine and phosphothreonine content and seems to be regulated by protein kinase C, since: (1) DiC8 (a kinase C stimulator) added to monolayers cultured without calcium significantly increases the vinculin phosphorylation level; (2) H7 and calphostin C (both protein kinase C inhibitors) completely abolish this increase during a calcium switch; (3) inhibition of phosphorylation during a calcium switch blocks the subcellular redistribution of vinculin and alpha-actinin. These results therefore suggest that vinculin phosphorylation by protein kinase C is a crucial step in the correct assembly of the epithelial junctional complex.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3