Receptor-Independent Cardiac Protein Kinase Cα Activation by Calpain-Mediated Truncation of Regulatory Domains

Author:

Kang Min-Young1,Zhang Yan1,Matkovich Scot J.1,Diwan Abhinav1,Chishti Athar H.1,Dorn Gerald W.1

Affiliation:

1. From the Center for Pharmacogenomics (M.-Y.K., Y.Z., S.J.M., A.D., G.W.D.), Department of Medicine, Washington University School of Medicine, St Louis, Mo; and Department of Pharmacology (A.H.C.), University of Illinois College of Medicine at Chicago.

Abstract

Rationale: Protein kinase (PK)Cs and calpain cysteine proteases are highly expressed in myocardium. Ischemia produces calcium overload that activates calpains and conventional PKCs. However, calpains can proteolytically process PKCs, and the potential in vivo consequences of this interaction are unknown. Objective: To determine the biochemical and pathophysiological consequences of calpain-mediated cardiac PKCα proteolysis. Methods and Results: Isolated mouse hearts subjected to global ischemia/reperfusion demonstrated cleavage of PKCα. Calpain 1 overexpression was not sufficient to produce PKCα cleavage in normal hearts, but ischemia-induced myocardial PKCα cleavage and myocardial injury were greatly increased by cardiac-specific expression of calpain 1. In contrast, calpain 1 gene ablation or inhibition with calpastatin prevented ischemia/reperfusion induced PKCα cleavage; infarct size was decreased and ventricular function enhanced in infarcted calpain 1 knockout hearts. To determine consequences of PKCα fragmentation on myocardial protein phosphorylation, transgenic mice were created conditionally expressing full-length PKCα or its N-terminal and C-terminal calpain 1 cleavage fragments. Two-dimensional mapping of ventricular protein extracts showed a distinct PKCα phosphorylation profile that was exaggerated and distorted in hearts expressing the PKCα C-terminal fragment. MALDI mass spectroscopy revealed hyperphosphorylation of myosin-binding protein C and phosphorylation of atypical substrates by the PKCα C-terminal fragment. Expression of parent PKCα produced a mild cardiomyopathy, whereas myocardial expression of the C-terminal PKCα fragment induced a disproportionately severe, rapidly lethal cardiomyopathy. Conclusions: Proteolytic processing of PKCα by calcium-activated calpain activates pathological cardiac signaling through generation of an unregulated and/or mistargeted kinase. Production of the PKCα C-terminal fragment in ischemic hearts occurs via a receptor-independent mechanism.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine,Physiology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3