Eyeshine and spectral tuning of long wavelength-sensitive rhodopsins: no evidence for red-sensitive photoreceptors among five Nymphalini butterfly species

Author:

Briscoe Adriana D.1,Bernard Gary D.2

Affiliation:

1. Comparative and Evolutionary Physiology Group, Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697,USA

2. Department of Electrical Engineering, University of Washington, Seattle,WA 98195-2500, USA

Abstract

SUMMARYSpectral tuning of rhodopsins commonly refers to the effects of opsin amino acid substitutions on the wavelength for peak sensitivity of the rhodopsin absorption spectrum. Nymphalini butterflies provide an opportunity for identifying some of the amino acid substitutions responsible for insect rhodopsin spectral tuning because the majority of photoreceptor cells (R3-9)in the adult retina express only a single long wavelength-sensitive (LWS)opsin mRNA transcript. Therefore, the opsin genotype can be directly correlated with its phenotype. We determined the LWS opsin gene sequence from cDNA of the mourning cloak Nymphalis antiopa, and from genomic DNA of the malachite Siproeta stelenes and the peacock Inachis io.Using an epi-microspectrophotometer we examined each butterfly's eyeshine for photochemical evidence of multiple LWS rhodopsins and found only one. We then performed partial-bleaching experiments to obtain absorbance spectra for the LWS rhodopsins of all three species as well as from another nymphalid, the buckeye Junonia coenia. The isolated LWS opsin gene sequences varied in length from 1437-1612 bp and encode rhodopsins R522 (S. stelenes),R530 (I. io), R534 (N. antiopa) and, together with a previously published sequence, R510 (J. coenia). Comparative sequence analysis indicates that the S. stelenes rhodopsin is slightly blue-shifted compared to the typical 530 nm lepidopteran rhodopsin because of the presence of a S138A substitution at a homologous site that in mammalian MWS/LWS rhodopsins causes a 5 nm blue-shift. The difference in peak absorption between R522 of S. stelenes and R530 of Inachis io is therefore largely accounted for by this substitution. This suggests that spectral tuning mechanisms employing the S138A may have evolved in parallel in mammalian and butterfly MWS/LWS rhodopsins across 500 million years of evolution.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3