Alexander-disease mutation of GFAP causes filament disorganization and decreased solubility of GFAP

Author:

Hsiao Victoria C.1,Tian Rujin1,Long Heather2,Der Perng Ming2,Brenner Michael3,Quinlan Roy A.2,Goldman James E.1

Affiliation:

1. Department of Pathology and the Center for Neurobiology and Behavior, Columbia University, New York, NY 10032, USA

2. School of Biological and Medical Sciences, University of Durham, Durham, DH1 3LE, UK

3. Department of Neurobiology, and The Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA

Abstract

Alexander disease is a fatal neurological illness characterized by white-matter degeneration and the formation of astrocytic cytoplasmic inclusions called Rosenthal fibers, which contain the intermediate filament glial fibrillary acidic protein (GFAP), the small heat-shock proteins HSP27 and αB-crystallin, and ubiquitin. Many Alexander-disease patients are heterozygous for one of a set of point mutations in the GFAP gene, all of which result in amino acid substitutions. The biological effects of the most common alteration, R239C, were tested by expressing the mutated protein in cultured cells by transient transfection. In primary rat astrocytes and Cos-7 cells, the mutant GFAP was incorporated into filament networks along with the endogenous GFAP and vimentin, respectively. In SW13Vim– cells, which have no endogenous cytoplasmic intermediate filaments, wild-type human GFAP frequently formed filamentous bundles, whereas the R239C GFAP formed `diffuse' and irregular patterns. Filamentous bundles of R239C GFAP were sometimes formed in SW13Vim– cells when wild-type GFAP was co-transfected. Although the presence of a suitable coassembly partner (vimentin or GFAP) reduced the potential negative effects of the R239C mutation on GFAP network formation, the mutation affected the stability of GFAP in cells in a dominant fashion. Extraction of transfected SW13Vim– cells with Triton-X-100-containing buffers showed that the mutant GFAP was more resistant to solubilization at elevated KCl concentrations. Both wild-type and R239C GFAP assembled into 10 nm filaments with similar morphology in vitro. Thus, although the R239C mutation does not appear to affect filament formation per se, the mutation alters the normal solubility and organization of GFAP networks.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3