Linking whole-body angular momentum and step placement during perturbed human walking

Author:

Leestma Jennifer K.12ORCID,Golyski Pawel R.13ORCID,Smith Courtney R.4ORCID,Sawicki Gregory S.125ORCID,Young Aaron J.1234ORCID

Affiliation:

1. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology 1 , Atlanta, GA 30332 , USA

2. Institute for Robotics and Intelligent Machines, Georgia Institute of Technology 2 , Atlanta, GA 30332 , USA

3. Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology 3 , Atlanta, GA 30332 , USA

4. Georgia Institute of Technology 4 Wallace H. Coulter Department of Biomedical Engineering , , Atlanta, GA 30332 , USA

5. School of Biological Sciences, Georgia Institute of Technology 5 , Atlanta, GA 30332 , USA

Abstract

ABSTRACT Human locomotion is remarkably robust to environmental disturbances. Previous studies have thoroughly investigated how perturbations influence body dynamics and what recovery strategies are used to regain balance. Fewer studies have attempted to establish formal links between balance and the recovery strategies that are executed to regain stability. We hypothesized that there would be a strong relationship between the magnitude of imbalance and recovery strategy during perturbed walking. To test this hypothesis, we applied transient ground surface translations that varied in magnitude, direction and onset time while 11 healthy participants walked on a treadmill. We measured stability using integrated whole-body angular momentum (iWBAM) and recovery strategy using step placement. We found the strongest relationships between iWBAM and step placement in the frontal plane for earlier perturbation onset times in the perturbed step (R2=0.52, 0.50) and later perturbation onset times in the recovery step (R2=0.18, 0.25), while correlations were very weak in the sagittal plane (all R2≤0.13). These findings suggest that iWBAM influences step placement, particularly in the frontal plane, and that this influence is sensitive to perturbation onset time. Lastly, this investigation is accompanied by an open-source dataset to facilitate research on balance and recovery strategies in response to multifactorial ground surface perturbations, including 96 perturbation conditions spanning all combinations of three magnitudes, eight directions and four gait cycle onset times.

Funder

National Science Foundation

Georgia Tech

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3