Effect of hip abduction assistance on metabolic cost and balance during human walking

Author:

Park Juneil1ORCID,Nam Kimoon1ORCID,Yun Juseok12ORCID,Moon JunYoung1ORCID,Ryu JaeWook1ORCID,Park Sungjin1ORCID,Yang Seungtae12,Nasirzadeh Alireza1,Nam Woochul1ORCID,Ramadurai Sruthi3ORCID,Kim Myunghee3ORCID,Lee Giuk1ORCID

Affiliation:

1. School of Mechanical Engineering, Chung-Ang University, 06974 Seoul, South Korea.

2. HUROTICS Inc., 06974 Seoul, South Korea.

3. Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL, USA.

Abstract

The use of wearable robots to provide walking assistance has rapidly grown over the past decade, with notable advances made in robot design and control methods toward reducing physical effort while performing an activity. The reduction in walking effort has mainly been achieved by assisting forward progression in the sagittal plane. Human gait, however, is a complex movement that combines motions in three planes, not only the sagittal but also the transverse and frontal planes. In the frontal plane, the hip joint plays a key role in gait, including balance. However, wearable robots targeting this motion have rarely been investigated. In this study, we developed a hip abduction assistance wearable robot by formulating the hypothesis that assistance that mimics the biological hip abduction moment or power could reduce the metabolic cost of walking and affect the dynamic balance. We found that hip abduction assistance with a biological moment second peak mimic profile reduced the metabolic cost of walking by 11.6% compared with the normal walking condition. The assistance also influenced balance-related parameters, including the margin of stability. Hip abduction assistance influenced the center-of-mass movement in the mediolateral direction. When the robot assistance was applied as the center of mass moved toward the opposite leg, the assistance replaced some of the efforts that would have otherwise been provided by the human. This indicates that hip abduction assistance can reduce physical effort during human walking while influencing balance.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Artificial Intelligence,Control and Optimization,Computer Science Applications,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Springs vs. motors: Ideal assistance in the lower limbs during walking at different speeds;PLOS Computational Biology;2024-09-04

2. Characterization of Hip Abduction Exoskeleton for Assistance During Gait Perturbations;2024 IEEE International Conference on Advanced Intelligent Mechatronics (AIM);2024-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3