A comparison of visual and haltere-mediated feedback in the control of body saccades inDrosophila melanogaster

Author:

Bender John A.1,Dickinson Michael H.1

Affiliation:

1. Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA

Abstract

SUMMARYThe flight trajectories of fruit flies consist of straight flight segments interspersed with rapid turns called body saccades. Although the saccades are stereotyped, it is not known whether their brief time course is due to a feed-forward (predetermined) motor program or due to feedback from sensory systems that are reflexively activated by the rapid rotation. Two sensory modalities, the visual system and the mechanosensory halteres, are likely sources of such feedback because they are sensitive to angular velocities within the range experienced during saccades. Utilizing a magnetic tether in which flies are fixed in space but free to rotate about their yaw axis, we systematically manipulated the feedback from the visual and haltere systems to test their role in determining the time course of body saccades. We found that altering visual feedback had no significant effect on the dynamics of saccades, whereas increasing and decreasing the amount of haltere-mediated feedback decreased and increased saccade amplitude, respectively. In other experiments, we altered the aerodynamic surface of the wings such that the flies had to actively modify their wing-stroke kinematics to maintain straight flight on the magnetic tether. Flies exhibit such modification, but the control is compromised in the dark, indicating that the visual system does provide feedback for flight stability at lower angular velocities, to which the haltere system is less sensitive. Cutting the wing surface disrupted the time course of the saccades, indicating that although flies employ sensory feedback to modulate saccade dynamics, it is not precise or fast enough to compensate for large changes in wing efficacy.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3