Visual stimulation of saccades in magnetically tetheredDrosophila

Author:

Bender John A.1,Dickinson Michael H.1

Affiliation:

1. Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA

Abstract

SUMMARYFlying fruit flies, Drosophila melanogaster, perform `body saccades', in which they change heading by about 90° in roughly 70 ms. In free flight, visual expansion can evoke saccades, and saccade-like turns are triggered by similar stimuli in tethered flies. However, because the fictive turns in rigidly tethered flies follow a much longer time course, the extent to which these two behaviors share a common neural basis is unknown. A key difference between tethered and free flight conditions is the presence of additional sensory cues in the latter, which might serve to modify the time course of the saccade motor program. To study the role of sensory feedback in saccades, we have developed a new preparation in which a fly is tethered to a fine steel pin that is aligned within a vertically oriented magnetic field,allowing it to rotate freely around its yaw axis. In this experimental paradigm, flies perform rapid turns averaging 35° in 80 ms, similar to the kinematics of free flight saccades. Our results indicate that tethered and free flight saccades share a common neural basis, but that the lack of appropriate feedback signals distorts the behavior performed by rigidly fixed flies. Using our new paradigm, we also investigated the features of visual stimuli that elicit saccades. Our data suggest that saccades are triggered when expanding objects reach a critical threshold size, but that their timing depends little on the precise time course of expansion. These results are consistent with expansion detection circuits studied in other insects, but do not exclude other models based on the integration of local movement detectors.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 124 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3