Effects of night-time warming on temperate ectotherm reproduction: potential fitness benefits of climate change for side-blotched lizards

Author:

Clarke Donald N.1,Zani Peter A.12

Affiliation:

1. Department of Biology, Whitman College, Walla Walla, WA 99362, USA

2. Department of Biology, Gonzaga University, Spokane, WA 99258, USA

Abstract

SUMMARY Temperate ectotherms, especially those at higher latitudes, are expected to benefit from climate warming, but few data yet exist to verify this prediction. Furthermore, most previous studies on the effects of climate change utilized a model of uniform annual change, which assumes that temperature increases are symmetric on diurnal or seasonal time scales. In this study, we simulated observed trends in the asymmetric alteration of diurnal temperature range by increasing night-time temperatures experienced by female lizards during their ovarian cycle as well as by the resulting eggs during their incubation. We found that higher night-time temperatures during the ovarian cycle increased the probability of reproductive success and decreased the duration of the reproductive cycle, but did not affect embryo stage or size at oviposition, clutch size, egg mass or relative clutch mass. Furthermore, higher incubation temperatures increased hatchling size and decreased incubation period but had no effect on incubation success. Subsequent hatchlings were more likely to survive winter if they hatched earlier, though our sample size of hatchlings was relatively small. These findings indicate that higher night-time temperatures mainly affect rate processes and that certain aspects of life history are less directly temperature dependent. As our findings confirm that climate warming is likely to increase the rate of development as well as advance reproductive phenology, we predict that warmer nights during the breeding season will increase reproductive output as well as subsequent survival in many temperate ectotherms, both of which should have positive fitness effects.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3