Regulation of flowering time byArabidopsis MSI1

Author:

Bouveret Romaric1,Schönrock Nicole1,Gruissem Wilhelm1,Hennig Lars1

Affiliation:

1. Institute of Plant Sciences and Zurich-Basel Plant Science Center, ETH Zurich, LFW E17, CH-8092 Zurich, Switzerland.

Abstract

The transition to flowering is tightly controlled by endogenous programs and environmental signals. We found that MSI1 is a novel flowering-time gene in Arabidopsis. Both partially complemented msi1 mutants and MSI1 antisense plants were late flowering,whereas ectopic expression of MSI1 accelerated flowering. Physiological experiments revealed that MSI1 is similar to genes from the autonomous promotion of flowering pathway. Expression of most known flowering-time genes did not depend on MSI1, but the induction of SOC1 was delayed in partially complemented msi1 mutants. Delayed activation of SOC1 is often caused by increased expression of the floral repressor FLC. However, MSI1 function is independent of FLC. MSI1 is needed to establish epigenetic H3K4 di-methylation and H3K9 acetylation marks in SOC1 chromatin. The presence of these modifications correlates with the high levels of SOC1 expression that induce flowering in Arabidopsis. Together, the control of flowering time depends on epigenetic mechanisms for the correct expression of not only the floral repressor FLC, but also the floral activator SOC1.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3