A comparison of propagated action potentials from tropical and temperate squid axons: different durations and conduction velocities correlate with ionic conductance levels

Author:

Rosenthal Joshua J. C.1,Bezanilla Francisco1

Affiliation:

1. Departments of Physiology and Anesthesiology, UCLA School of Medicine, Los Angeles, CA 90095, USA

Abstract

SUMMARYTo determine which physiological properties contribute to temperature adaptation in the squid giant axon, action potentials were recorded from four species of squid whose habitats span a temperature range of 20°C. The environments of these species can be ranked from coldest to warmest as follows: Loligo opalescens>Loligo pealei>Loligo plei>Sepioteuthis sepioidea. Action potential conduction velocities and rise times,recorded at many temperatures, were equivalent for all Loligospecies, but significantly slower in S. sepioidea. By contrast, the action potential's fall time differed among species and correlated well with the thermal environment of the species (`warmer' species had slower decay times). The biophysical underpinnings of these differences were examined in voltage-clamped axons. Surprisingly, no differences were found between the activation kinetics or voltage-dependence of Na+ and K+currents. Conductance levels, however, did vary. Maximum Na+conductance (gNa) in S. sepiodea was significantly less than in the Loligo species. K+ conductance (gK) was highest in L. pealei, intermediate in L. plei and smallest in S. sepiodea. The time course and magnitude of gK and gNa were measured directly during membrane action potentials. These data reveal clear species-dependent differences in the amount of gK and gNa recruited during an action potential.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3