Nitrogen metabolism and excretion in the mangrove killifish Rivulus marmoratus II. Significant ammonia volatilization in a teleost during air-exposure

Author:

Frick N. T.1,Wright P. A.1

Affiliation:

1. Department of Zoology, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract

SUMMARY The mangrove killifish Rivulus marmoratus can tolerate prolonged periods of air-exposure (>1 month). During these periods of emersion, we hypothesized that R. marmoratus would convert potentially toxic ammonia into urea and free amino acids (FAAs). In air-exposed fish, both ammonia (JAmm) and urea (JUrea) excretion continued at approximately 57 % and 39 %, respectively, of submerged rates. Remarkably, approximately 42 % of the total ammonia excreted during air-exposure was through NH3 volatilization. Ammonia did not accumulate in whole-body tissues of air-exposed fish, but levels of both urea and some FAAs (primarily alanine and glutamine) were up to twofold higher after 10 days. The activities of the ornithine–urea cycle enzymes carbamoyl phosphate synthetase III and ornithine transcarbamylase increased (by approximately 30 % and 36 %, respectively) in whole-body tissues of air-exposed fish, while levels of arginase remained unchanged. The activities of enzymes involved in amino acid and oxidative metabolism were not significantly different between control and air-exposed fish. Partitioning of the anterior and posterior ends of immersed fish revealed that just over half (57 %) of the total nitrogen (ammonia+urea) was excreted through the anterior end of the fish, presumably via the branchial tissues, while emersed fish increased excretion via the posterior end (kidney+skin). R. marmoratus do not undergo a shift towards ureotelism during air-exposure. Rather, we propose that R. marmoratus are able to survive on land for extended periods without significant ammonia accumulation because they continuously release ammonia, partially by NH3 volatilization.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3