Performance limits of labriform propulsion and correlates with fin shape and motion

Author:

Walker Jeffrey A.1,Westneat Mark W.2

Affiliation:

1. Department of Biology, University of Southern Maine, 96 Falmouth Street, Portland, ME 04103, USA and

2. Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA

Abstract

SUMMARYLabriform locomotion, which is powered by oscillating the paired pectoral fins, varies along a continuum from rowing the fins back and forth to flapping the fins up and down. It has generally been assumed (i) that flapping is more mechanically efficient than rowing, a hypothesis confirmed by a recent simulation experiment, and (ii) that flapping should be associated with wing-shaped fins while rowing should be associated with paddle-shaped fins. To determine whether these hypotheses and the results of the simulation experiment are consistent with natural variation, we compared the steady swimming performance (critical swimming speed) of four species of labrid fish (Cirrhilabrus rubripinnis, Pseudocheilinus octotaenia, Gomphosus varius and Halichoeres bivittatus) selected to form two pairs of closely related species that vary in fin shape and in the direction of fin motion. The results were consistent with expectations. Within each pair, the species with the best swimming performance also had (i) a fin shape characterized by a higher aspect ratio, a longer leading edge relative to the trailing edge fin rays and the center of fin area located closer to the fin base, and (ii) a steeper (more dorsoventral) stroke plane.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3