Capture of zooplankton by site-attached fish: striking dynamics under different flow speeds and prey paths

Author:

Ella Hadar,Genin Amatzia

Abstract

Consumption of pelagic zooplankton plays a vital role in the functioning of benthic communities such as coral reefs and kelp forests. Many fish that consume zooplankton in those habitats are site attached, foraging for drifting prey while maintaining a fixed position close to a shelter such as a branching coral or a perforated rock. Therefore, the flow, in which their planktonic prey drifts, is expected to affect their foraging movements. However, most attributes of those movements are poorly understood- a gap that our study seeks to fulfil. Our experiments were carried out in a laboratory flume with 4 common coral-reef site-attached species. Their movements were recorded in 3D, using two orthogonal video cameras. Different fishes exhibited similar trends despite noticeable differences in their body size, their morphology, the type of shelters they use, and the typical size of the groups in which they reside. In all species, the strike distance decreased with increasing flow speed. Similarly, the distance between the fish and prey at the moment of strike initiation (“Reactive Distance”) decreased with increasing flow speed, as well as the angle between that “Reactive Distance” and flow direction. Surprisingly, striking speeds (relative to Earth) remained nearly unchanged under different flows speeds. However, faster strikes occurred when oriented at wider angles relative to the flow. Taken together, the fish appear to determine the speed and angle of their strikes based on a cognitive ability to assess the prey’s drifting speed and path in order to reach on time the intercepting point. A rough estimate of the time it takes the fish to decide on the strike’s orientation and speed, would suggest a few hundred of milliseconds. Using published data on the fishes’ feeding rates, we found that the fish significantly differed in their feeding efficiencies, defined as the percent of prey they captured from those passing through their actual foraging space. That difference may explain inter-specific differences in the habitats the fish use and their group size.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3