Energetics of median and paired fin swimming, body and caudal fin swimming, and gait transition in parrotfish (Scarus schlegeli) and triggerfish (Rhinecanthus aculeatus)

Author:

Korsmeyer Keith E.1,Steffensen John Fleng1,Herskin Jannik2

Affiliation:

1. Marine Biological Laboratory, University of Copenhagen,Strandpromenaden 5, Helsingør, DK-3000, Denmark

2. Present address: Department of Environmental Engineering, Institute of Life Sciences, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg,Denmark

Abstract

SUMMARYTo determine the energetic costs of rigid-body, median or paired-fin (MPF)swimming versus undulatory, body-caudal fin (BCF) swimming, we measured oxygen consumption as a function of swimming speed in two MPF swimming specialists, Schlegel's parrotfish and Picasso triggerfish. The parrotfish swam exclusively with the pectoral fins at prolonged swimming speeds up to 3.2 total lengths per second (L s-1; 30 min critical swimming speed, Ucrit). At higher speeds, gait transferred to a burst-and-coast BCF swimming mode that resulted in rapid fatigue. The triggerfish swam using undulations of the soft dorsal and anal fins up to 1.5 L s-1, beyond which BCF undulations were recruited intermittently. BCF swimming was used continuously above 3.5 L s-1, and was accompanied by synchronous undulations of the dorsal and anal fins. The triggerfish were capable of high, prolonged swimming speeds of up to 4.1 L s-1 (30 min Ucrit). In both species, the rates of increase in oxygen consumption with swimming speed were higher during BCF swimming than during rigid-body MPF swimming. Our results indicate that, for these species,undulatory swimming is energetically more costly than rigid-body swimming, and therefore support the hypothesis that MPF swimming is more efficient. In addition, use of the BCF gait at higher swimming speed increased the cost of transport in both species beyond that predicted for MPF swimming at the same speeds. This suggests that, unlike for terrestrial locomotion, gait transition in fishes does not occur to reduce energetic costs, but to increase recruitable muscle mass and propulsive surfaces. The appropriate use of the power and exponential functions to model swimming energetics is also discussed.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference67 articles.

1. Alexander, R. M. (1989). Optimization and gaits in the locomotion of vertebrates. Physiol. Rev.69,1199-1227.

2. Anderson, E. J., McGillis, W. R. and Grosenbaugh, M. A.(2001). The boundary layer of swimming fish. J. Exp. Biol.204,81-102.

3. Arreola, V. I. and Westneat, M. W. (1996). Mechanics of propulsion by multiple fins: kinematics of aquatic locomotion in the burrfish (Chilomycterus schoepfi). Proc. R. Soc. Lond. B263,1689-1696.

4. Beamish, F. W. H. (1978). Swimming capacity. In Fish Physiology, vol. 7 (ed. W. S. Hoar and D. J. Randall), pp. 101-189. New York:Academic Press.

5. Bell, W. H. and Terhune, L. D. B. (1970). Water tunnel design for fisheries research. Fish. Res. Board Canada Tech. Rep.195,1-69.

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3