Hindlimb muscle spindles inform preparatory forelimb coordination prior to landing in toads

Author:

Duman Alex1ORCID,Azizi Emanuel1

Affiliation:

1. University of California, Irvine Department of Ecology & Evolutionary Biology , , Irvine, CA 92697 , USA

Abstract

ABSTRACT Animals move across a wide range of surface conditions in real-world environments to acquire resources and avoid predation. To effectively navigate a variety of surfaces, animals rely on several mechanisms including intrinsic mechanical responses, spinal-level central pattern generators, and neural commands that require sensory feedback. Muscle spindle Ia afferents play a critical role in providing sensory feedback and informing motor control strategies across legged vertebrate locomotion, which is apparent in cases where this sensory input is compromised. Here, we tested the hypothesis that spindle Ia afferents from hindlimb muscles are important for coordinating forelimb landing behavior in the cane toad. We performed bilateral sciatic nerve reinnervations to ablate the stretch reflex from distal hindlimb muscles while allowing for motor neuron recovery. We found that toads significantly delayed the onset and reduced the activation duration of their elbow extensor muscle following spindle Ia afferent ablation in the hindlimbs. However, reinnervated toads achieved similar elbow extension at touchdown to that of their pre-surgery state. Our results suggest that while toads likely tuned the activation timing of forelimb muscles in response to losing Ia afferent sensation from the hindlimbs they were likely able to employ compensatory strategies that allowed them to continue landing effectively with reduced sensory information during take-off. These findings indicate muscle spindle Ia afferents may contribute to tuning complex movements involving multiple limbs.

Funder

U.S. Army Research Laboratory

U.S. Army Research Office

National Science Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3