Forces Generated by the Jaws of Clypeasteroids (Echinodermata: Echinoidea)

Author:

ELLERS OLAF1,TELFORD MALCOLM2

Affiliation:

1. Department of Zoology, Duke University, Durham, NC 27706, USA; Department of Zoology, University of California, Davis, CA 95616, USA

2. Department of Zoology, Universtity of Toronto, Toronto, Ontario, Canada, M5S 1A1

Abstract

Aristotle' lantern acts like a five-toothed ‘vice grip.’ Contraction of the interpyramidal muscles creates tangential stresses that are converted to radial forces along the teeth. Two mechanical models are proposed to explain this conversion. In the first, the lantern is regarded as a thick-walled cylinder resisting internal pressure; in the second, it is treated as a cluster of wedges. The two models differ primarily in the allowance of radial forces within the muscle in the cylinder and their exclusion in the wedge model. Maximum muscle stress required for a given force along the teeth depends on the ratio of external to internal lantern radii (ro/ri). Maximal force requires that (ro/ri) should be greater than 2, which is the case in Clypeaster rosaceus (L.). The models allow calculation of a dimensionless number, F, which scales the force exerted by the teeth for changes in lantern size and the number of pyramids. Biting force was measured in C. rosaceus and used to calculate the muscle stress required by the mechanical models. For the thick-walled cylinder, maximum interpyramidal muscle stress was calculated to be 2.8×106N m−2. For the wedge model it was 1.9×105N m−2. The models were supported by comparison of predicted with observed biting forces in another clypeasteroid, Encope michelini L. Agassiz.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3