Phosphatidylserine receptor is required for the engulfment of dead apoptotic cells and for normal embryonic development in zebrafish

Author:

Hong Jiann-Ruey1,Lin Gen-Hwa2,Lin Cliff Ji-Fan23,Wang Wan-ping2,Lee Chien-Chung2,Lin Tai-Lang2,Wu Jen-Leih2

Affiliation:

1. Laboratory of Molecular Virology and Biotechnology, Institute of Biotechnology, National Cheng-Kung University, Tainan 701, Taiwan

2. Laboratory of Marine Molecular Biology and Biotechnology, Institute of Zoology, Academia Sinica, Nankang, Taipei 115, Taiwan

3. Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 117, Taiwan

Abstract

During development, the role of the phosphatidylserine receptor (PSR) in the removal of apoptotic cells that have died is poorly understood. We have investigated this role of PSR in developing zebrafish. Programmed cell death began during the shield stage, with dead cells being engulfed by a neighboring cell that showed a normal-looking nucleus and the nuclear condensation multi-micronuclei of an apoptotic cell. The zebrafish PSR engulfing receptor was cloned (zfpsr), and its nucleotide sequence was compared with corresponding sequences in Drosophila melanogaster (76% identity),human (74%), mouse (72%) and Caenorhabditis elegans (60%). The PSR receptor contained a jmjC domain (residues 143-206) that is a member of the cupin metalloenzyme superfamily, but in this case serves an as yet unknown function(s). psr knockdown by a PSR morpholino oligonucleotide led to accumulation of a large number of dead apoptotic cells in whole early embryo. These cells interfered with embryonic cell migration. In addition, normal development of the somite, brain, heart and notochord was sequentially disrupted up to 24 hours post-fertilization. Development could be rescued in defective embryos by injecting psr mRNA. These results are consistent with a PSR-dependent system in zebrafish embryos that engulfs apoptotic cells mediated by PSR-phagocytes during development, with the system assuming an important role in the normal development of tissues such as the brain, heart,notochord and somite.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3