Per- and Polyfluoroalkyl Substances: Impacts on Morphology, Behavior and Lipid Levels in Zebrafish Embryos

Author:

Albers Janice1,Mylroie John2,Kimble Ashley2,Steward Catherine3,Chapman Kacy1,Wilbanks Mitchell2,Perkins Edward2,Garcia-Reyero Natàlia2ORCID

Affiliation:

1. Oak Ridge Institute for Science and Education, Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA

2. Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA

3. Bennett Aerospace, Raleigh, NC 27603, USA

Abstract

The presence of per- and polyfluoroalkyl substances (PFASs) in aquatic environments is often persistent and widespread. Understanding the potential adverse effects from this group of chemicals on aquatic communities allows for better hazard characterization. This study examines impacts on zebrafish (Danio rerio) embryo physiology, behavior, and lipid levels from exposure to perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), and heptadecafluorooctanesulfonic acid (PFOS). Embryos were exposed to lethal and sublethal levels of each chemical and monitored for alterations in physiological malformations, mortality, lipid levels, and behavior (only PFOA and PFHxS). The predicted 50% lethal concentrations for 120 hpf embryos were 528.6 ppm PFOA, 14.28 ppm PFHxS, and 2.14 ppm PFOS. Spine curvature and the inability of the 120 hpf embryos to maintain a dorsal-up orientation was significantly increased at 10.2 ppm PFHxS and 1.9 ppm PFOS exposure. All measured 120 hpf embryo behaviors were significantly altered starting at the lowest levels tested, 188 ppm PFOA and 6.4 ppm PFHxS. Lipid levels decreased at the highest PFAS levels tested (375 PFOA ppm, 14.4 PFHxS ppm, 2.42 ppm PFOS). In general, the PFAS chemicals, at the levels examined in this study, increased morphological deformities, embryo activity, and startle response time, as well as decreased lipid levels in 120 hpf zebrafish embryos.

Funder

Department of Defense

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3