Author:
Cheng You-Liang,Chen Rey-Huei
Abstract
Protein phosphatase 1 (PP1) controls many aspects of cell physiology, which depends on its correct targeting in the cell. Nuclear localization of Glc7, the catalytic subunit of PP1 in budding yeast, requires the AAA-ATPase Cdc48 and its adaptor Shp1 through an unknown mechanism. Herein, we show that mutations in SHP1 cause misfolding of Glc7 that co-aggregates with Hsp104 and Hsp42 chaperones and requires the proteasome for clearance. Mutation or depletion of the PP1 regulatory subunits Sds22 and Ypi1 that are involved in nuclear targeting of Glc7 also produce Glc7 aggregates, indicating that association with regulatory subunits stabilizes Glc7 conformation. Use of a substrate-trap Cdc48QQ mutant reveals that Glc7-Sds22-Ypi1 transiently associates with and is the major target of Cdc48-Shp1. Furthermore, Cdc48-Shp1 binds and prevents misfolding of PP1-like phosphatases Ppz2 and Ppq1, but not other types of phosphatases. Our data propose that Cdc48-Shp1 functions as a molecular chaperone for the structural integrity of PP1 complex in general and that it specifically promotes the assembly of Glc7-Sds22-Ypi1 for nuclear import.
Publisher
The Company of Biologists
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献