Affiliation:
1. Centre for Ecosystem Diversity and Dynamics in the Department of Environmental Biology, Curtin University of Technology, PO Box U1987, Perth, Western Australia, 6845
2. Zoology, School of Animal Biology, University of Western Australia, Crawley,Western Australia, 6009
Abstract
SUMMARY
To better understand the effects of ambient relative humidity (RH) on physiological variables and the implications of RH-correcting evaporative water loss (EWL) data for marsupials, we examined the effect of RH on EWL,body temperature (Tb), metabolic rate (MR) and thermal conductance (C) of the brushtail possum (Trichosurus vulpecula), a medium-sized marsupial. Correcting EWL data for 27 species of marsupial for water vapour pressure deficit (ΔWVP) in the chamber during measurement significantly increased, rather than decreased, the variability of the allometric relationship for EWL. For the brushtail possum,both ambient temperature (Ta) and RH significantly affected EWL. At Ta=25°C, EWL was independent of RH at≤63% RH, but decreased linearly at higher RH values. At Ta=30°C, EWL was significantly related to RH from 26%to 92% RH. There was a significant effect of Ta on Tb and dry thermal conductance (Cdry;higher at 30°C), but no effect of RH. For MR and wet thermal conductance(Cwet) there was a significant effect of Ta (MR higher and Cwet lower at 25°C), and RH at Ta=30°C (MR higher and Cwet lower at the lowest RH) but not at 25°C. Our results indicate that brushtail possums do not necessarily show the linear relationship between ambient RH and EWL expected for an endotherm, possibly because of behavioural modification of their immediate microclimate. This may account for the failure of WVP deficit correction to improve the allometric EWL relationship for marsupials. Chamber RH is an important environmental factor to be considered when measuring standard physiological variables such as MR and Cwet.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献