Thermal robustness of biomechanical processes

Author:

Olberding Jeffrey P.1ORCID,Deban Stephen M.2ORCID

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA

2. Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Science Center 110, Tampa, FL 33620, USA

Abstract

ABSTRACT Temperature influences many physiological processes that govern life as a result of the thermal sensitivity of chemical reactions. The repeated evolution of endothermy and widespread behavioral thermoregulation in animals highlight the importance of elevating tissue temperature to increase the rate of chemical processes. Yet, movement performance that is robust to changes in body temperature has been observed in numerous species. This thermally robust performance appears exceptional in light of the well-documented effects of temperature on muscle contractile properties, including shortening velocity, force, power and work. Here, we propose that the thermal robustness of movements in which mechanical processes replace or augment chemical processes is a general feature of any organismal system, spanning kingdoms. The use of recoiling elastic structures to power movement in place of direct muscle shortening is one of the most thoroughly studied mechanical processes; using these studies as a basis, we outline an analytical framework for detecting thermal robustness, relying on the comparison of temperature coefficients (Q10 values) between chemical and mechanical processes. We then highlight other biomechanical systems in which thermally robust performance that arises from mechanical processes may be identified using this framework. Studying diverse movements in the context of temperature will both reveal mechanisms underlying performance and allow the prediction of changes in performance in response to a changing thermal environment, thus deepening our understanding of the thermal ecology of many organisms.

Funder

National Science Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3