Evolutionary changes in the capacity for organismic autonomy

Author:

Rosslenbroich Bernd1ORCID

Affiliation:

1. Institute of Evolutionary Biology and Morphology, Centre for Biomedical Education and Research, Faculty of Health School of Medicine Witten/Herdecke University Witten Germany

Abstract

AbstractStudies of macroevolution have revealed various trends in evolution – which have been documented and discussed. There is, however, no consensus on this topic. Since Darwin's time one presumption has persisted: that throughout evolution organisms increase their independence from and stability towards environmental influences. Although this principle has often been stated in the literature, it played no role in mainstream theory. In a closer examination, we studied this particular feature and described that many of the major transitions in animal evolution have been characterized by changes in the capacity for physiological regulation. Organisms gained in robustness, self‐regulation, homeostasis and stabilized self‐referential, intrinsic functions within their respective systems. This is associated with expanded environmental flexibility, such as new opportunities for movement and behaviour. Together, these aspects can be described as changes in the capacity for autonomy. There seems to be a large‐scale trajectory in evolution during which some organisms gained in autonomy and flexibility. At the same time, adaptations to the environment emerged that were a prerequisite for survival. Apparently, evolution produced differential combinations of autonomy traits and adaptations. These processes are described as modifications in relative autonomy because numerous interconnections with the environment and dependencies upon it were retained. Also, it is not a linear trend, but rather an outcome of all the diverse processes which have been involved during evolutionary changes. Since the principle of regulation is a core element of physiology, the concept of autonomy is suitable to build a bridge from physiology to evolutionary research. image

Funder

John Templeton Foundation

Publisher

Wiley

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3