Double network gels and the toughness of terrestrial slug glue

Author:

Wilks Alex M.1,Rabice Sarah R.1,Garbacz Holland S.1,Harro Cailin C.1,Smith Andrew M.1

Affiliation:

1. Department of Biology, Ithaca College, Ithaca, NY 14850, USA

Abstract

The terrestrial slug Arion subfuscus produces a defensive secretion that is sticky and tough, despite being a dilute gel. It is unusual in having high stiffness for a gel, yet retaining the high extensibility typical of mucus. In tensile tests, it sustains an average peak stress of 101 kPa, and fails at an average strain of 9.5. This gives the gel toughness; it requires much greater strain energy to fracture than most gels. This toughness may arise from a double network type mechanism. In this mechanism, two separate, interpenetrating networks of polymers with different properties combine to give toughness that can be several orders of magnitude greater than either network individually. Native gel electrophoresis suggests that A. subfuscus glue consists of two networks: a network of negatively charged proteins ranging in Mr from 40–220 × 103 that can be dissociated by hydroxylamine, and a network of heparan-sulfate like proteoglycans. The two networks are not tightly linked, though proteins of Mr 40 × 103 and 165 × 103 may associate with the carbohydrates. Targeted disruption of either network separately, using enzymatic hydrolysis, disulfide bond breakage, or imine bond disruption completely disrupted the glue, resulting in no measurable toughness. Thus, the two networks separately provide little toughness, but together they work synergistically to create a tough material, as predicted in the double network mechanism.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3