The relative contribution of calcium, zinc and oxidation-based cross-links to the stiffness of Arion subfuscus glue

Author:

Braun Melanie1,Menges Meghan1,Opoku Freda1,Smith Andrew M.1

Affiliation:

1. Ithaca College, NY, USA

Abstract

Summary Metal ions are present in many different biological materials, and are capable of forming strong cross-links in aqueous environments. The relative contribution of different metal-based cross-links was measured in the defensive glue produced by the terrestrial slug Arion subfuscus. This glue contains calcium, zinc, manganese, iron and copper. These metals are essential to the integrity of the glue and to gel stiffening. Removal of all metals caused at least a fifteen-fold decrease in the storage modulus of the glue. Selectively disrupting cross-links involving hard Lewis acids such as calcium weakened the glue, while disrupting cross-links involving borderline Lewis acids such as zinc did not. Calcium is the most common cation bound to the glue (40 mmol L-1), and its charge is balanced primarily by sulfate at 82 to 84 mmol L-1. Thus, these ions likely play a primary role in bringing polymers together directly. Imine bonds formed as a result of protein oxidation also contribute substantially to the strength of the glue. Disrupting these bonds with hydroxylamine caused a 33% decrease in storage modulus of the glue, while stabilizing them by reduction with sodium borohydride increased the storage modulus by 40%. Thus, a combination of metal-based bonds operates in this glue. Most likely, cross-links directly involving calcium play a primary role in bringing together and stabilizing the polymer network, followed by imine bond formation and possible iron coordination.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3