Surpassing the subitizing threshold: appetitive–aversive conditioning improves discrimination of numerosities in honeybees

Author:

Howard Scarlett R.12ORCID,Avarguès-Weber Aurore1,Garcia Jair E.2,Greentree Andrew D.3,Dyer Adrian G.24

Affiliation:

1. Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31400 Toulouse, France

2. Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, VIC 3000, Australia

3. ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, VIC 3000, Australia

4. Department of Physiology, Monash University, Clayton, VIC 3800, Australia

Abstract

ABSTRACT Animals including humans, fish and honeybees have demonstrated a quantity discrimination threshold at four objects, often known as subitizing elements. Discrimination between numerosities at or above the subitizing range is considered a complex capacity. In the current study, we trained and tested two groups of bees on their ability to differentiate between quantities (4 versus 5 through to 4 versus 8) when trained with different conditioning procedures. Bees trained with appetitive (reward) differential conditioning demonstrated no significant learning of this task, and limited discrimination above the subitizing range. In contrast, bees trained using appetitive–aversive (reward–aversion) differential conditioning demonstrated significant learning and subsequent discrimination of all tested comparisons from 4 versus 5 to 4 versus 8. Our results show conditioning procedure is vital to performance on numerically challenging tasks, and may inform future research on numerical abilities in other animals.

Funder

Australian Government

Fyssen Foundation

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3