Toxoplasma gondiiinfection confers resistance against BimS-induced apoptosis by preventing the activation and mitochondrial targeting of pro-apoptotic Bax

Author:

Hippe Diana1,Weber Arnim2,Zhou Liying3,Chang Donald C.3,Häcker Georg2,Lüder Carsten G. K.1

Affiliation:

1. Institute for Medical Microbiology, Georg-August-University, Kreuzbergring 57, D-37075 Göttingen, Germany

2. Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München, Trogerstrasse 30, D-81675 Munich, Germany

3. Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Abstract

In order to accomplish their life style, intracellular pathogens, including the apicomplexan Toxoplasma gondii, subvert the innate apoptotic response of infected host cells. However, the precise mechanisms of parasite interference with the mitochondrial apoptotic pathway remain unknown. Here, we used the conditional expression of the BH3-only protein BimS to pinpoint the interaction of T. gondii with the intrinsic pathway of apoptosis. Infection of epithelial cells with T. gondii dose-dependently abrogated BimS-triggered release of cytochrome c from host-cell mitochondria into the cytosol, induction of activity of caspases 3, 7 and 9, and chromatin condensation. Furthermore, inhibition of apoptosis in parasite-infected lymphocytes counteracted death of Toxoplasma-infected host cells. Although total cellular levels and mitochondrial targeting of BimS was not altered by the infection, the activation of pro-apoptotic effector proteins Bax and Bak was strongly impaired. Inhibition of Bax and Bak activation by T. gondii was seen with regard to their conformational changes, the cytosol-to-mitochondria targeting and the oligomerization of Bax but not their cellular protein levels. Blockade of Bax and Bak activation was not mediated by the upregulation of anti-apoptotic Bcl-2-like proteins following infection. Further, the BH3-mimetic ABT-737 failed to overcome the Toxoplasma-imposed inhibition of BimS-triggered apoptosis. These results indicate that T. gondii targets activation of pro-apoptotic Bax and Bak to inhibit the apoptogenic function of mitochondria and to increase host-cell viability.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3