Evidence for incorporation of free-floating mesothelial cells as a mechanism of serosal healing

Author:

Foley-Comer Adam J.1,Herrick Sarah E.1,Al-Mishlab Talib1,Prêle Cecilia M.1,Laurent Geoffrey J.1,Mutsaers Steven E.2

Affiliation:

1. Department of Medicine, Royal Free and University College Medical School,The Rayne Institute, London, WC1E 6JJ, UK

2. Present address: University Department of Surgery, University of Western Australia, Royal Perth Hospital, Perth, Western Australia, 6000,Australia

Abstract

Regeneration of the mesothelium is unlike that of other epithelial-like surfaces, as healing does not occur solely by centripetal migration of cells from the wound edge. The mechanism of repair of mesothelium is controversial,but it is widely accepted, without compelling evidence, that pluripotent cells beneath the mesothelium migrate to the surface and differentiate into mesothelial cells. In this study we examined an alternative hypothesis, using in vivo cell-tracking studies, that repair involves implantation,proliferation and incorporation of free-floating mesothelial cells into the regenerating mesothelium. Cultured mesothelial cells, fibroblasts and peritoneal lavage cells were DiI- or PKH26-PCL-labelled and injected into rats immediately following mesothelial injury. Implantation of labelled cells was assessed on mesothelial imprints using confocal microscopy, and cell proliferation was determined by proliferating cell nuclear antigen immunolabelling. Incorporation of labelled cells, assessed by the formation of apical junctional complexes, was shown by confocal imaging of zonula occludens-1 protein. Labelled cultured mesothelial and peritoneal lavage cells, but not cultured fibroblasts, implanted onto the wound surface 3, 5 and 8 days after injury. These cells proliferated and incorporated into the regenerated mesothelium, as demonstrated by nuclear proliferating cell nuclear antigen staining and membrane-localised zonula occludens-1 expression,respectively. Furthermore, immunolocalisation of the mesothelial cell marker HBME-1 demonstrated that the incorporated, labelled lavage-derived cells were mesothelial cells and not macrophages as it had previously been suggested. This study has clearly shown that serosal healing involves implantation,proliferation and incorporation of free-floating mesothelial cells into the regenerating mesothelium.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3