Role of the serosa in intestinal anastomotic healing: insights from in-depth histological analysis of human and murine anastomoses

Author:

Weber Marie-Christin1ORCID,Clees Zoé1,Buck Annalisa12,Fischer Adrian3,Steffani Marcella1,Wilhelm Dirk1,Martignoni Marc1,Friess Helmut1,Rinkevich Yuval3,Neumann Philipp-Alexander12

Affiliation:

1. Department of Surgery, Technical University of Munich, TUM School of Medicine and Health , Munich , Germany

2. Institute for Advanced Study, Technical University of Munich , Munich , Germany

3. Institute of Regenerative Biology and Medicine, Helmholtz Munich , Munich , Germany

Abstract

Abstract Background Anastomotic leakage following colorectal surgery remains a significant complication despite advances in surgical techniques. Recent findings on serosal injury repair in coelomic cavities, such as the peritoneum, challenge the current understanding of the cellular origins and mechanisms underlying intestinal anastomotic healing. Understanding the contribution of each layer of the intestinal wall during anastomotic healing is needed to find new therapeutic strategies to prevent anastomotic leakage. The aim of this experimental study was to investigate the role of the serosal layer of the intestinal wall in anastomotic healing. Materials and methods Comprehensive histologic analysis of human and murine anastomoses was performed to elucidate histologic changes in the different intestinal layers during anastomotic healing. In vivo staining of the extracellular matrix (ECM) in the serosal layer was performed using a fluorophore-conjugated N-hydroxysuccinimide-ester before anastomosis surgery in a murine model. Results Histological examination of both human and murine anastomoses revealed that closure of the serosal layer occurred first during the healing process. In vivo serosal ECM staining demonstrated that a significant portion of the newly formed ECM within the anastomosis was indeed deposited onto the serosal layer. Furthermore, mesenchymal cells within the anastomotic scar were positive for mesothelial cell markers, podoplanin and Wilms tumour protein. Conclusions In this experimental study, the results suggest that serosal scar formation is an important mechanism for anastomotic integrity in intestinal anastomoses. Mesothelial cells may significantly contribute to scar formation during anastomotic healing through epithelial-to-mesenchymal transition, potentially suggesting a novel therapeutic target to prevent anastomotic leakage by enhancing physiological healing processes.

Funder

Else Kröner-Fresenius-Stiftung

European Research Council

LEO Foundation

European Foundation for the Study of Diabetes

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3