Affiliation:
1. Medical Research Council Secretory Control Research Group, Physiological Laboratory, University of Liverpool L69 3BX, UK
2. Department of Medicine, University of Liverpool L69 3BA, UK
Abstract
In normal pancreatic acinar cells, the oxidant menadione evokes repetitive cytosolic Ca2+ spikes, partial mitochondrial depolarisation,cytochrome c release and apoptosis. The physiological agonists acetylcholine and cholecystokinin also evoke cytosolic Ca2+ spikes but do not depolarise mitochondria and fail to induce apoptosis. Ca2+ spikes induced by low agonist concentrations are confined to the apical secretory pole of the cell by the buffering action of perigranular mitochondria. Menadione prevents mitochondrial Ca2+ uptake, which permits rapid spread of Ca2+ throughout the cell. Menadione-induced mitochondrial depolarisation is due to induction of the permeability transition pore. Blockade of the permeability transition pore with bongkrekic acid prevents activation of caspase 9 and 3. In contrast, the combination of antimycin A and acetylcholine does not cause apoptosis but elicits a global cytosolic Ca2+ rise and mitochondrial depolarisation without induction of the permeability transition pore. Increasing the cytosolic Ca2+buffering power by BAPTA prevents cytosolic Ca2+ spiking, blocks the menadione-elicited mitochondrial depolarisation and blocks menadione-induced apoptosis. These results suggest a twin-track model in which both intracellular release of Ca2+ and induction of the permeability transition pore are required for initiation of apoptosis.
Publisher
The Company of Biologists
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献