Affiliation:
1. Division of Physical Biochemistry, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
2. Present address: Department of Biophysics, Max Planck Institute for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
Abstract
Calmodulin redistribution in MDCK and HeLa cells subjected to microtubule perturbations by antimitotic drugs was followed using a calmodulin-EGFP fusion protein that preserves the Ca2+ affinity, target binding and activation properties of native calmodulin. CaM-EGFP targeting to spindle structures in normal cell division and upon spindle microtubule disruption allows evaluation of the dynamic redistribution of calmodulin in cell division. Under progressive treatment of stably transfected mammalian cells with nocodazole or vinblastine, the centrosomal matrix at the mitotic poles subdivides into numerous small `star-like' structures, with the calmodulin concentrated centrally, and partially distinct from the reduced microtubule mass to which kinetochores and chromosomes are attached. Prolonged vinblastine treatment causes the release of localised calmodulin into a uniform cytoplasmic distribution, and tubulin paracrystal formation. By contrast,paclitaxel treatment of metaphase cells apparently causes limited disassembly of the pericentriolar material into a number of multipolar `ring-like'structures containing calmodulin, each one having multiple attached microtubules terminating in the partially disordered kinetochore/chromosome complex. Thus drugs with opposite effects in either destabilising or stabilising mitotic microtubules cause subdivision of the centrosomal matrix into two distinctive calmodulin-containing structures, namely small punctate`stars' or larger polar `rings' respectively. The `star-like' structures may represent an integral subcomponent for the attachment of kinetochore microtubules to the metaphase centrosome complex. The results imply that microtubules have a role in stabilising the structure of the pericentriolar matrix, involving interaction, either direct or indirect, with one or more proteins that are targets for binding of calmodulin. Possible candidates include the pericentriolar matrix-associated coiled-coil proteins containing calmodulin-binding motifs, such as myosin V, kendrin (PCNT2) and AKAP450.
Publisher
The Company of Biologists
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献