Identification and characterization of a novel human plant pathogenesis-related protein that localizes to lipid-enriched microdomains in the Golgi complex

Author:

Eberle Heike B.1,Serrano Ramon L.1,Füllekrug Joachim2,Schlosser Andreas3,Lehmann Wolf D.3,Lottspeich Friedrich4,Kaloyanova Dora1,Wieland Felix T.1,Helms J. Bernd1

Affiliation:

1. Biochemie-Zentrum Heidelberg (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany

2. Max-Planck-Institute of Molecular Cell Biology and Genetics,Pfotenhauerstrasse 108, D-01307 Dresden, Germany

3. Central Spectroscopy Department, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany

4. Max-Planck Institut für Biochemie, Martinsried,Germany

Abstract

Group 1 of plant pathogenesis-related proteins (PR-1) and a variety of related mammalian proteins constitute a superfamily of proteins that share structural similarities. Little is known about their function, but all the family members identified to date are co-translationally translocated to the lumen of the endoplasmic reticulum and are secreted as soluble proteins or are targeted to vacuoles. Here we report the identification of a novel family member that localizes to the cytosolic site of the endomembrane system in mammalian cells. After detergent solubilization of isolated Golgi membranes, a 17 kDa protein was found associated with a low-density detergent-insoluble fraction. The amino-acid sequence, determined by microsequencing and molecular cloning, revealed a significant homology with the superfamily of PR-1 proteins. Golgi-associated PR-1 protein (GAPR-1) showed a brefeldin-A-sensitive Golgi localization in immunofluorescence. Interestingly,the protein remained associated with the microdomain fraction in the presence of Brefeldin A. By mass spectrometry, GAPR-1 was shown to be myristoylated. Immunoprecipitation of GAPR- 1 from Golgi membranes resulted in the coimmunoprecipitation of caveolin-1, indicating a direct interaction between these two proteins. Myristoylation, together with protein-protein or electrostatic interactions at physiological pH owing to the highly basic pI of GAPR-1 (pI 9.4) could explain the strong membrane association of GAPR-1. Tissue screening revealed that GAPR-1 is not detectably expressed in liver,heart or adrenal glands. High expression was found in monocytes, leukocytes,lung, spleen and embryonic tissue. Consistent with the involvement of PR-1 proteins in the plant immune system, these data could indicate that GAPR-1 is involved in the immune system.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3