Identification and Functional Analysis of CAP Genes from the Wheat Stripe Rust Fungus Puccinia striiformis f. sp. tritici

Author:

Zhao Mengxin12,Zhang Yanhui1,Guo Hualong1,Gan Pengfei1,Cai Mengmeng1,Kang Zhensheng1ORCID,Cheng Yulin3

Affiliation:

1. State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China

2. College of Life Sciences, Northwest A&F University, Xianyang 712100, China

3. Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China

Abstract

Cysteine-rich secretory proteins (C), antigen 5 (A), and pathogenesis-related 1 proteins (P) comprise widespread CAP superfamily proteins, which have been proven to be novel virulence factors of mammalian pathogenic fungi and some plant pathogens. Despite this, the identification and function of CAP proteins in more species of plant pathogens still need to be studied. This work presents the identification and functional analysis of CAP superfamily proteins from Puccinia striiformis f. sp. tritici (Pst), an important fungal pathogen that causes wheat stripe rust on wheat worldwide. A total of six CAP genes were identified in the Pst genome, designated as PsCAP1–PsCAP6. Five PsCAP proteins, including PsCAP1, PsCAP2, PsCAP3, PsCAP4, and PsCAP5, have N-terminal signal peptides secreted with the yeast signal sequence trap assay. Single-nucleotide polymorphism (SNP) analysis indicated that they showed a low level of intraspecies polymorphism. The expression abundance of PsCAP genes at different Pst infection stages was detected by RT-qPCR, and most of them were highly expressed during Pst infection on wheat and also Pst sexual reproduction on barberry (Berberis shensiana). Noticeably, the silencing of these six PsCAP genes by BSMV-mediated HIGS indicated that PsCAP1, PsCAP4, and PsCAP5 contribute significantly to Pst infection in wheat. These results indicate that PsCAP proteins may act as virulence factors during Pst infection, which also provides insights into Pst pathogenicity.

Funder

National Natural Science Foundation of China

Shaanxi Innovation Team Project

111 Project from the Ministry of Education of China

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3