Tetraploid embryos rescue embryonic lethality caused by an additional maternally inherited X chromosome in the mouse

Author:

Goto Y.1,Takagi N.1

Affiliation:

1. Division of Bioscience, Graduate School of Environmental Earth Science, and Research Center for Molecular Genetics, Hokkaido University, Sapporo 0600810, Japan.

Abstract

Mouse embryos with an additional maternally inherited X chromosome, i.e., disomic for XM (DsXM), cease to grow early in development and have a deficient extraembryonic region. We hypothesized that the underdeveloped extraembryonic region is attributed to two copies of XM that escape inactivation due to maternal imprinting. To examine the validity of this hypothesis and throw more light on the significance of X chromosome dosage on cell differentiation, we generated DsXM(XMXMXP and XMXMY) embryos at a high frequency taking advantage of the elevated incidence of X chromosome nondisjunction in female mice heterozygous for two Robertsonian X-autosome translocations, Rb(X.2)2Ad and Rb(X.9)6H. Although two XM chromosomes seem to remain active in both trophectoderm and primitive endoderm, detailed histological examination showed that the polar trophectoderm derivatives (ectoplacental cone and extraembryonic ectoderm) are severely affected, but the primitive endoderm derivatives (visceral and parietal endoderm) are relatively unaffected. Successful rescue of DsXM embryos by aggregation with tetraploid embryos show that X chromosome inactivation occurred normally leaving one X active in epiblast derivatives. Thus, two copies of active XM chromosome in cells of the polar trophectoderm cell lineage seem to be the main cause of early lethality shown by DsXM embryos as a result of failure in formation of ectoplacental cone and extraembryonic ectoderm.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3