Unusual chromatin status and organization of the inactive X chromosome in murine trophoblast giant cells

Author:

Corbel Catherine1,Diabangouaya Patricia1,Gendrel Anne-Valerie1,Chow Jennifer C.1,Heard Edith1

Affiliation:

1. Unité de Génétique et Biologie du Développement, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France.

Abstract

Mammalian X-chromosome inactivation (XCI) enables dosage compensation between XX females and XY males. It is an essential process and its absence in XX individuals results in early lethality due primarily to extra-embryonic defects. This sensitivity to X-linked gene dosage in extra-embryonic tissues is difficult to reconcile with the reported tendency of escape from XCI in these tissues. The precise transcriptional status of the inactive X chromosome in different lineages has mainly been examined using transgenes or in in vitro differentiated stem cells and the degree to which endogenous X-linked genes are silenced in embryonic and extra-embryonic lineages during early postimplantation stages is unclear. Here we investigate the precise temporal and lineage-specific X-inactivation status of several genes in postimplantation mouse embryos. We find stable gene silencing in most lineages, with significant levels of escape from XCI mainly in one extra-embryonic cell type: trophoblast giant cells (TGCs). To investigate the basis of this epigenetic instability, we examined the chromatin structure and organization of the inactive X chromosome in TGCs obtained from ectoplacental cone explants. We find that the Xist RNA-coated X chromosome has a highly unusual chromatin content in TGCs, presenting both heterochromatic marks such as H3K27me3 and euchromatic marks such as histone H4 acetylation and H3K4 methylation. Strikingly, Xist RNA does not form an overt silent nuclear compartment or Cot1 hole in these cells. This unusual combination of silent and active features is likely to reflect, and might underlie, the partial activity of the X chromosome in TGCs.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3