Disruption of the pollen-expressedFERONIAhomologsANXUR1andANXUR2triggers pollen tube discharge

Author:

Boisson-Dernier Aurélien12,Roy Sucharita1,Kritsas Konstantinos1,Grobei Monica A.1,Jaciubek Miloslawa1,Schroeder Julian I.2,Grossniklaus Ueli1

Affiliation:

1. Institute of Plant Biology and Zürich-Basel Plant Science Center,University of Zürich, Zollikerstrasse 107, 8008 Zürich,Switzerland.

2. Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California San Diego, La Jolla,CA 92093, USA.

Abstract

The precise delivery of male to female gametes during reproduction in eukaryotes requires complex signal exchanges and a flawless communication between male and female tissues. In angiosperms, molecular mechanisms have recently been revealed that are crucial for the dialog between male (pollen tube) and female gametophytes required for successful sperm delivery. When pollen tubes reach the female gametophyte, they arrest growth, burst and discharge their sperm cells. These processes are under the control of the female gametophyte via the receptor-like serine-threonine kinase (RLK) FERONIA(FER). However, the male signaling components that control the sperm delivery remain elusive. Here, we show that ANXUR1 and ANXUR2(ANX1, ANX2), which encode the closest homologs of the FER-RLK in Arabidopsis, are preferentially expressed in pollen. Moreover,ANX1-YFP and ANX2-YFP fusion proteins display polar localization to the plasma membrane at the tip of the pollen tube. Finally, genetic analyses demonstrate that ANX1 and ANX2 function redundantly to control the timing of pollen tube discharge as anx1 anx2 double-mutant pollen tubes cease their growth and burst in vitro and fail to reach the female gametophytes in vivo. We propose that ANX-RLKs constitutively inhibit pollen tube rupture and sperm discharge at the tip of growing pollen tubes to sustain their growth within maternal tissues until they reach the female gametophytes. Upon arrival, the female FER-dependent signaling cascade is activated to mediate pollen tube reception and fertilization, while male ANX-dependent signaling is deactivated, enabling the pollen tube to rupture and deliver its sperm cells to effect fertilization.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3