Evidence for within-individual energy reallocation in cold-challenged, egg-producing birds

Author:

Salvante Katrina G.1,Vézina François1,Williams Tony D.1

Affiliation:

1. Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada, V5A 1S6

Abstract

SUMMARY Recent studies have shown that the metabolic cost of avian egg production involves a 16–27% increase in metabolic rate (MR) above non-reproductive basal or resting values (BMR and RMR, respectively). To determine how the metabolic cost of egg production interacted with the costs of other essential processes (such as cold acclimation and active heat production), we measured the MR of non-breeding and egg-producing zebra finches (Taeniopygia guttata) while (a) warm-acclimated (to 19–21°C) and measured within their thermoneutral zone (at 35°C), (b) cold-acclimated (to 7°C) and measured at thermoneutrality (at 35°C, i.e. not actively producing heat), and (c) cold-acclimated and measured below thermoneutrality (at 7°C) (i.e. during active heat production). The metabolic cost of egg production was small (24% above BMR) compared with the additive costs of cold acclimation and active heat production (224% above BMR). Exposure to low ambient temperatures was accompanied by an increase in seed consumption (by 72%) and a decrease in locomotor activity (by 72%) compared with warm-acclimated, non-breeding values. By contrast, egg production in heat-producing females was associated with an 11% decrease in MR and a 22% decrease in seed consumption compared with non-breeding thermoregulating values. Our data suggest that while the increase in MR associated with egg production is small in relation to the birds' capacity to increase MR in response to other energetically demanding processes, the addition of egg production to these metabolically costly activities may be enough to necessitate the use of energy-saving strategies, such as internal energy reallocation, to cope with the additional energetic demands.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3