The role of temperature as a driver of metabolic flexibility in the Red-billed Leiothrix (Leiothrix lutea)

Author:

Cui Danqi,Wang Na,Ge Jingru,Xu Jiaying,Zheng Weihong,Liu Jinsong

Abstract

Abstract Background The thermoregulatory ability of animals is strongly influenced by the temperature of their environment. Acclimation to cold requires a range of physiological and morphological adjustments. In this study, we tested the hypothesis that a small passerine, the Red-billed Leiothrix (Leiothrix lutea), can maintain homeothermy in cold conditions by adjusting the physiology and biochemistry of its tissue and organs and return to its former physiological and biochemical state when moved to a warm temperature. Methods Phenotypic variation in thermogenic activity of the Red-billed Leiothrixs (Leiothrix lutea) was investigated under warm (35 °C), normal (25 °C) or cold (15 °C) ambient temperature conditions. Oxygen consumption was measured using an open-circuit respirometry system. Mitochondrial state-4 respiration and cytochrome-c oxidase (COX) activity in liver, kidney heart and pectoral muscle were measured with a Clark electrode. Results Birds acclimated to an ambient temperature of 15 °C for 4 weeks significantly increased their basal metabolic rate (BMR) compared to a control group kept at 25 °C. Birds acclimated to 35 °C decreased their BMR, gross energy intake (GEI) and digestible energy intake (DEI). Furthermore, birds acclimated to 15 °C increased state-4 respiration in their pectoral muscles and cytochrome-c oxidase (COX) activity in their liver and pectoral muscle, compared to the 25 °C control group. Birds acclimated to 35 °C also displayed lower state-4 respiration and COX activity in the liver, heart and pectoral muscles, compared to those kept at 25 °C. There was a positive correlation between BMR and state-4 respiration, and between BMR and COX activity, in all of the above organs except the liver and heart. Conclusions Our study illustrates that the morphological, physiological, and enzymatic changes are associated with temperature acclimation in the Red-billed Leiothrix, and supports the notion that the primary means by which small birds meet the energetic challenges of cold conditions is through metabolic adjustments.

Funder

National Natural Science Foundation of China

Publisher

Elsevier BV

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3