Tribute to R. G. Boutilier: The role for skeletal muscle in the hypoxia-induced hypometabolic responses of submerged frogs

Author:

West T. G.1,Donohoe P. H.2,Staples J. F.3,Askew G. N.4

Affiliation:

1. Imperial College London, Biomedical Sciences, Biological Nanoscience Section, SAF-Building, South Kensington, London, SW7 2AZ, UK

2. Department of Physiology, Otago School of Medical Sciences, Dunedin, New Zealand

3. Department of Biology, University of Western Ontario, London, ON, N6A 5B7,Canada

4. Institute of Integrative and Comparative Biology, University of Leeds,Leeds, LS2 9JT, UK

Abstract

SUMMARYMuch of Bob Boutilier's research characterised the subcellular, organ-level and in vivo behavioural responses of frogs to environmental hypoxia. His entirely integrative approach helped to reveal the diversity of tissue-level responses to O2 lack and to advance our understanding of the ecological relevance of hypoxia tolerance in frogs. Work from Bob's lab mainly focused on the role for skeletal muscle in the hypoxic energetics of overwintering frogs. Muscle energy demand affects whole-body metabolism, not only because of its capacity for rapid increases in ATP usage, but also because hypometabolism of the large skeletal muscle mass in inactive animals impacts so greatly on in vivo energetics. The oxyconformance and typical hypoxia-tolerance characteristics (e.g. suppressed heat flux and preserved membrane ion gradients during O2 lack) of skeletal muscle in vitro suggest that muscle hypoperfusion in vivo is possibly a key mechanism for (i) downregulating muscle and whole-body metabolic rates and (ii) redistributing O2 supply to hypoxia-sensitive tissues. The gradual onset of a low-level aerobic metabolic state in the muscle of hypoxic, cold-submerged frogs is indeed important for slowing depletion of on-board fuels and extending overwintering survival time. However, it has long been known that overwintering frogs cannot survive anoxia or even severe hypoxia. Recent work shows that they remain sensitive to ambient O2 and that they emerge rapidly from quiescence in order to actively avoid environmental hypoxia. Hence, overwintering frogs experience periods of hypometabolic quiescence interspersed with episodes of costly hypoxia avoidance behaviour and exercise recovery.In keeping with this flexible physiology and behaviour, muscle mechanical properties in frogs do not deteriorate during periods of overwintering quiescence. On-going studies inspired by Bob Boutilier's integrative mindset continue to illuminate the cost–benefit(s) of intermittent locomotion in overwintering frogs, the constraints on muscle function during hypoxia, the mechanisms of tissue-level hypometabolism, and the details of possible muscle atrophy resistance in quiescent frogs.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3