Alteration of 28S rRNA 2′-O-methylation by etoposide correlates with decreased SMN phosphorylation and reduced Drosha levels

Author:

Burke Marilyn F.1ORCID,McLaurin Douglas M.1,Logan Madelyn K.1,Hebert Michael D.1ORCID

Affiliation:

1. Department of Cell and Molecular Biology, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA

Abstract

The most numerous types of modifications in human rRNA are pseudouridylation and 2′-O ribose methylation. These modifications are performed by small nucleolar ribonucleoproteins (snoRNPs) which contain a guide RNA (snoRNA) that base pairs at specific sites within the rRNA to direct the modification. rRNA modifications can vary, generating ribosome heterogeneity. One possible method that can be used to regulate rRNA modifications is by controlling snoRNP activity. RNA fragments derived from some small Cajal body-specific RNAs (scaRNA 2, 9 and 17) may influence snoRNP activity. Most scaRNAs accumulate in the Cajal body, a subnuclear domain, where they participate in the biogenesis of small nuclear RNPs. But scaRNA 2, 9 and 17 generate nucleolus-enriched fragments of unclear function, and we hypothesize that these fragments form regulatory RNPs that impact snoRNP activity and modulate rRNA modifications. Our previous work has shown that SMN, Drosha and various stresses, including etoposide treatment, may alter regulatory RNP formation. Here we demonstrate that etoposide treatment decreases the phosphorylation of SMN, reduces Drosha levels and increases the 2′-O-methylation of two sites within 28S rRNA. These findings further support a role for SMN and Drosha in regulating rRNA modification, possibly by affecting snoRNP or regulatory RNP activity.

Funder

University of Mississippi

Publisher

The Company of Biologists

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3