Cold-stable eye lens crystallins of the Antarctic nototheniid toothfishDissostichus mawsoniNorman

Author:

Kiss Andor J.1,Mirarefi Amir Y.2,Ramakrishnan Subramanian3,Zukoski Charles F.23,DeVries Arthur L.1,Cheng Chi-Hing C.1

Affiliation:

1. Department of Animal Biology, University of Illinois at Urbana-Champaign,Urbana, Illinois, 61801, USA

2. Centre for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA

3. Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA

Abstract

SUMMARYThe eye lenses of the Antarctic nototheniid fishes that inhabit the perennially freezing Antarctic seawater are transparent at –2°C,whereas the cold-sensitive mammalian and tropical fish lenses display cold-induced cataract at 20°C and 7°C, respectively. No cold-cataract occurs in the giant Antarctic toothfish Dissostichus mawsoni lens when cooled to temperatures as low as –12°C, indicating highly cold-stable lens proteins. To investigate this cold stability, we characterised the lens crystallin proteins of the Antarctic toothfish, in parallel with those of the sub-tropical bigeye tuna Thunnus obesusand the endothermic cow Bos taurus, representing three disparate thermal climes (–2°C, 18°C and 37°C, respectively). Sizing chromatography resolved their lens crystallins into three groups,α/βH, β and γ, with γ crystallins being the most abundant (>40%) lens proteins in fish, in contrast to the cow lens where they comprise only 19%. The upper thermal stability of these crystallin components correlated with the body temperature of the species. In vitro chaperone assays showed that fish α crystallin can protect same-species γ crystallins from heat denaturation, as well as lysozyme from DTT-induced unfolding, and therefore are small Heat Shock Proteins (sHSP)like their mammalian counterparts. Dynamic light scattering measured an increase in size of αγ crystallin mixtures upon heating, which supports formation of the αγ complex as an integral part of the chaperone process. Surprisingly, in cross-species chaperone assays, tunaα crystallins only partly protected toothfish γ crystallins, while cow α crystallins completely failed to protect, indicating partial and no αγ interaction, respectively. Toothfish γ was likely to be the component that failed to interact, as the supernatant from a cowα plus toothfish γ incubation could chaperone cow γcrystallins in a subsequent heat incubation, indicating the presence of uncomplexed cow α. This suggests that the inability of toothfish γcrystallins to fully complex with tuna α, and not at all with the cowα crystallins, may have its basis in adaptive changes in the protein that relate to the extreme cold-stability of the toothfish lens.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3