Adaptation of Antarctic Icefish Vision to Extreme Environments

Author:

Castiglione Gianni M12345ORCID,Hauser Frances E16,Van Nynatten Alexander26,Chang Belinda S W12

Affiliation:

1. Department of Ecology and Evolutionary Biology, University of Toronto , Toronto, ON , Canada

2. Department of Cell and Systems Biology, University of Toronto , Toronto, ON , Canada

3. Department of Biological Sciences, Vanderbilt University , Nashville, TN

4. Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center , Nashville, TN

5. Evolutionary Studies, Vanderbilt University , Nashville, TN

6. Department of Biological Sciences, University of Toronto Scarborough , Toronto, ON , Canada

Abstract

Abstract Extreme environments, such as Antarctic habitats, present major challenges for many biological processes. Antarctic icefishes (Crynotothenioidea) represent a compelling system to investigate the molecular basis of adaptation to cold temperatures. Here, we explore how the sub-zero habitats of Antarctic icefishes have impacted rhodopsin (RH1) function, the temperature-sensitive dim-light visual pigment found in rod photoreceptors. Using likelihood models and ancestral reconstruction, we find that accelerated evolutionary rates in icefish RH1 underlie unique amino acid mutations absent from other deep-dwelling fishes, introduced before (S160A) and during (V259M) the onset of modern polar conditions. Functional assays reveal that these mutations red-shift rhodopsin spectral absorbance, consistent with spectral irradiance under sea ice. These mutations also lower the activation energy associated with retinal release of the light-activated RH1, and accelerate its return to the dark state, likely compensating for a cold-induced decrease in kinetic rates. These are adaptations in key properties of rhodopsin that mediate rod sensitivity and visual performance in the cold dark seas of the Antarctic.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3