A novel mechanism of body mass regulation

Author:

Adams C.S.1,Korytko A.I.1,Blank J.L.1

Affiliation:

1. Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Levy Research Building, Philadelphia, PA 19104-6002, USA, Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA and Department of Biological Sciences, Kent State University, Kent, OH 44242, USA. adamsc@biochem.dental.upenn.edu

Abstract

While significant attention has been devoted to the identification of hormonal factors that control body mass, little attention has been paid to the role of mechanical loading on animal mass. Here, we provide evidence that intraperitoneal implantation of metabolically inert mass results in a compensatory reduction in tissue mass. Deer mice (Peromyscus maniculatus) were surgically implanted with weights of 1, 2 or 3 g. There was a resulting loss of tissue mass (total body mass minus implant mass) that was proportional to the mass of the implant. This reduction in tissue mass followed a reduction in food intake in animals with 3 g implants. Evaluation of body composition failed to identify any single component that contributed to the loss of tissue mass. Removal of implants led to a transient restoration of body mass to levels similar to the total body mass of those control animals in which the implant had not been removed. However, within 12 days of implant removal, body mass again declined to the level seen before implant removal. These results suggest the existence of a set point that is sensitive to changes in the perception of mass and that is transduced via neural pathways.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The dual hypothesis of homeostatic body weight regulation, including gravity-dependent and leptin-dependent actions;Philosophical Transactions of the Royal Society B: Biological Sciences;2023-09-04

2. The Physiological Regulation of Body Fat Mass;Gastroenterology Clinics of North America;2023-06

3. The gravitostat protects diet‐induced obese rats against fat accumulation and weight gain;Journal of Neuroendocrinology;2021-07-09

4. Development of the central nervous system;The Inductive Brain in Development and Evolution;2021

5. Maintenance and change of phenotype: Inheritance of acquired traits;The Inductive Brain in Development and Evolution;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3