Hindlimb muscle function in relation to speed and gait:in vivopatterns of strain and activation in a hip and knee extensor of the rat (Rattus norvegicus)

Author:

Gillis Gary B.1,Biewener Andrew A.1

Affiliation:

1. Department of Organismic and Evolutionary Biology, Harvard University, Concord Field Station, Old Causeway Road, Bedford, MA 01730, USA

Abstract

SUMMARYUnderstanding how animals actually use their muscles during locomotion is an important goal in the fields of locomotor physiology and biomechanics. Active muscles in vivo can shorten, lengthen or remain isometric, and their mechanical performance depends on the relative magnitude and timing of these patterns of fascicle strain and activation. It has recently been suggested that terrestrial animals may conserve metabolic energy during locomotion by minimizing limb extensor muscle strain during stance, when the muscle is active, facilitating more economical force generation and elastic energy recovery from limb muscle–tendon units. However, whereas the ankle extensors of running turkeys and hopping wallabies have been shown to generate force with little length change (<6% strain), similar muscles in cats appear to change length more substantially while active. Because previous work has tended to focus on the mechanical behavior of ankle extensors during animal movements, the actions of more proximal limb muscles are less well understood. To explore further the hypothesis of force economy and isometric behavior of limb muscles during terrestrial locomotion, we measured patterns of electromyographic (EMG) activity and fascicle strain (using sonomicrometry) in two of the largest muscles of the rat hindlimb, the biceps femoris (a hip extensor) and vastus lateralis (a knee extensor) during walking, trotting and galloping. Our results show that the biceps and vastus exhibit largely overlapping bursts of electrical activity during the stance phase of each step cycle in all gaits. During walking and trotting, this activity typically commences shortly before the hindlimb touches the ground, but during galloping the onset of activity depends on whether the limb is trailing (first limb down) or leading (second limb down), particularly in the vastus. In the trailing limb, the timing of the onset of vastus activity is slightly earlier than that observed during walking and trotting, but in the leading limb, this activity begins much later, well after the foot makes ground contact (mean 7% of the step cycle). In both muscles, EMG activity typically ceases approximately two-thirds of the way through the stance phase. While electrically active during stance, biceps fascicles shorten, although the extent of shortening differs significantly among gaits (P<0.01). Total average fascicle shortening strain in the biceps is greater during walking (23±3%) and trotting (27±5%) than during galloping (12±5% and 19±6% in the trailing and leading limbs, respectively). In contrast, vastus fascicles typically lengthen (by 8–16%, depending on gait) over the first half of stance, when the muscle is electrically active, before shortening slightly or remaining nearly isometric over much of the second half of stance. Interestingly, in the leading limb during galloping, vastus fascicles lengthen prior to muscle activation and exhibit substantial shortening (10±2%) during the period when EMG activity is recorded. Thus, patterns of muscle activation and/or muscle strain differ among gaits, between muscles and even within the same muscle of contralateral hindlimbs (as during galloping). In contrast to the minimal strain predicted by the force economy hypothesis, our results suggest that proximal limb muscles in rats operate over substantial length ranges during stance over various speeds and gaits and exhibit complex and changing activation and strain regimes, exemplifying the variable mechanical roles that muscles can play, even during level, steady-speed locomotion.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference48 articles.

1. Alexander, R. McN. (1977). Terrestrial locomotion. In Mechanics and Energetics of Animal Locomotion (ed. R. McN. Alexander and G. Goldspink), pp. 168–203. London: Chapman & Hall.

2. Alexander, R. McN. (1988). Elastic Mechanisms in Animal Movement. Cambridge: Cambridge University Press.

3. Altringham, J. D. and Ellerby, D. J. (1999). Fish swimming: patterns in muscle function. J. Exp. Biol.202, 3397–3403.

4. Anapol, F. C. and Jungers, W. L. (1987). Telemetered electromyography of the fast and slow extensors of the leg of the brown lemur (Lemur fulvus). J. Exp. Biol.130, 341–358.

5. Armstrong, R. B. and Phelps, R. O. (1984). Muscle fiber type composition of the rat hindlimb. Am. J. Anat.171, 259–272.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3