Mechanisms of urea tolerance in urea-adapted populations ofDrosophila melanogaster

Author:

Etienne Regine1,Fortunat Kechener1,Pierce Valerie1

Affiliation:

1. Department of Biology, College of Staten Island/CUNY, 2800 Victory Boulevard, Staten Island, NY 10314, USA

Abstract

SUMMARYWhen behavioral avoidance cannot prevent an animal from being exposed to novel environmental toxins, physiological mechanisms must cope with the toxin and its effects. We are investigating the basis of urea tolerance in populations of Drosophila melanogaster that have been selected to survive and develop in food containing 300mmoll−1 urea. Previous research has demonstrated that the urea-selected larvae have lower levels of urea in their body than control larvae reared under the same conditions. The current series of experiments focuses on three possible ways of reducing urea levels in the body: urea metabolism, increased urea excretion and decreased urea uptake from the environment. We tested for urea metabolism directly, by assaying for activity of two urea-metabolizing enzymes, and indirectly, by looking for reduced urea content of their medium. To measure urea excretion rates in whole animals, we reared control and urea-selected larvae on urea-containing food (urea food), switched them to normal food and monitored the loss of urea from their hemolymph. We measured urea uptake by rearing control and selected larvae on normal food, switching them to urea food and monitoring the rate of urea appearance in the hemolymph. We found no evidence for urea metabolism by either direct or indirect methods. Control larvae excreted urea at a higher rate than selected, probably because they contained more urea than the selected larvae and thus had a greater gradient for urea loss. The rate of urea uptake in selected larvae was 2mmoll−1h−1 slower than the rate in control larvae, a difference that could account for the measured differences in body urea levels. Thus the selected larvae appear to have adapted to urea exposure primarily by decreasing the ability of urea to enter their body in the first place. The mechanism responsible for this reduction in uptake is uncertain.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3